A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs #### **Features and Benefits** - Low-noise output - · Fast power-on time - · Ratiometric rail-to-rail output - 4.5 to 6.0 V operation - Solid-state reliability - Factory-programmed at end-of-line for optimum performance - Robust ESD performance ### Packages: 3 pin SOT23W (suffix LH), and 3 pin SIP (suffix UA) Not to scale #### Description The A1301 and A1302 are continuous-time, ratiometric, linear Hall-effect sensor ICs. They are optimized to accurately provide a voltage output that is proportional to an applied magnetic field. These devices have a quiescent output voltage that is 50% of the supply voltage. Two output sensitivity options are provided: 2.5 mV/G typical for the A1301, and 1.3 mV/G typical for the A1302. The Hall-effect integrated circuit included in each device includes a Hall circuit, a linear amplifier, and a CMOS Class A output structure. Integrating the Hall circuit and the amplifier on a single chip minimizes many of the problems normally associated with low voltage level analog signals. High precision in output levels is obtained by internal gain and offset trim adjustments made at end-of-line during the manufacturing process. These features make the A1301 and A1302 ideal for use in position sensing systems, for both linear target motion and rotational target motion. They are well-suited for industrial applications over extended temperature ranges, from -40°C to 125°C. Two device package types are available: LH, a 3-pin SOT23W type for surface mount, and UA, a 3-pin ultramini SIP for through-hole mount. They are lead (Pb) free (suffix, -T) with 100% matte tin plated leadframes. #### **Functional Block Diagram** A1301-DS, Rev. 17 # A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs | Part Number | Packing* | Package | Ambient, T _A | Sensitivity (Typical) | | |--------------|---------------------------------------|---------------|-------------------------|-----------------------|--| | A1301EUA-T | Bulk, 500 pieces/bag | SIP | -40°C to 85°C | 2.5 mV/G | | | A1301KLHLT-T | 7-in. tape and reel, 3000 pieces/reel | Surface Mount | 4000 to 40000 | | | | A1301KUA-T | Bulk, 500 pieces/bag | SIP | -40°C to 125°C | | | | A1302ELHLT-T | 7-in. tape and reel, 3000 pieces/reel | Surface Mount | -40°C to 85°C | 1.3 mV/G | | | A1302KLHLT-T | 7-in. tape and reel, 3000 pieces/reel | Surface Mount | 4000 to 40000 | | | | A1302KUA-T | Bulk, 500 pieces/bag | SIP | -40°C to 125°C | | | #### **Absolute Maximum Ratings** | Characteristic | Symbol | Notes | Rating | Units | |--------------------------------|----------------------|---------|------------|-------| | Supply Voltage | Vcc | | 8 | V | | Output Voltage | V _{OUT} | | 8 | V | | Reverse Supply Voltage | V _{RCC} | | -0.1 | V | | Reverse Output Voltage | V _{ROUT} | | -0.1 | V | | Output Sink Current | I _{OUT} | | 10 | mA | | Constitution Analysis of Tours | TA | Range E | -40 to 85 | °C | | Operating Ambient Temperature | | Range K | -40 to 125 | °C | | Maximum Junction Temperature | T _J (max) | | 165 | °C | | Storage Temperature | T _{stg} | | -65 to 170 | °C | ^{*}Contact Allegro for additional packing options. # A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs #### **Pin-out Drawings** Package LH Terminal List | Symbol | Number | | Description | | |--------|------------|------------|-------------------------------|--| | | Package LH | Package UA | Description | | | VCC | 1 | 1 | Connects power supply to chip | | | VOUT | 2 | 3 | Output from circuit | | | GND | 3 | 2 | Ground | | # A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs DEVICE CHARACTERISTICS over operating temperature range, T_A , and V_{CC} = 5 V, unless otherwise noted | Characteristic | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |--|------------------------|---|------|-----------------|------|-------| | Electrical Characteristics | | | | | | _ | | Supply Voltage | V _{cc} | Running, T _J < 165°C | 4.5 | 12-22 | 6 | V | | Supply Current | I _{cc} | Output open | | 8.55 | 11 | mA | | Outrat Valtage | V _{OUT(High)} | I _{SOURCE} = -1 mA, Sens = nominal | 4.65 | 4.7 | 10-0 | V | | Output Voltage | V _{OUT(Low)} | I _{SINK} = 1 mA, Sens = nominal | | 0.2 | 0.25 | V | | Output Bandwidth | BW | | _ | 20 | N-0 | kHz | | Power-On Time | t _{PO} | V _{CC(min)} to 0.95 V _{OUT;} B = ±1400 G;
Slew rate = 4.5 V/µs to 4.5 V/100 ns | - | 3 | 5 | μs | | Output Resistance | R _{OUT} | I _{SINK} ≤ 1 mA, I _{SOURCE} ≥ -1 mA | | 2 | 5 | Ω | | Wide Band Output Noise, rms | V _{OUTN} | External output low pass filter ≤ 10 kHz;
Sens = nominal | - | 150 | 7=8 | μV | | Ratiometry | 1 | | 1 | | | | | Quiescent Output Voltage Error with respect to ΔV _{CC} ¹ | ΔV _{OUTQ(V)} | T _A = 25°C | - | - | ±3.0 | % | | Magnetic Sensitivity Error with respect to ΔV_{CC}^2 | ΔSens _(V) | T _A = 25°C | - | - | ±3.0 | % | | Output | 1 | 1 | | | | L. | | Linearity | Lin | T _A = 25°C | - | - | ±2.5 | % | | Symmetry | Sym | T _A = 25°C | - | - | ±3.0 | % | | Magnetic Characteristics | * | 4 | | | | | | Quiescent Output Voltage | V _{OUTQ} | B = 0 G; T _A = 25°C | 2.4 | 2.5 | 2.6 | V | | Quiescent Output Voltage over
Operating Temperature Range | $V_{OUTQ(\Delta T_A)}$ | B = 0 G | 2.2 | <u> </u> | 2.8 | V | | NA CONTRACTOR OF THE PARTY T | Sens | A1301; T _A = 25°C | 2.0 | 2.5 | 3.0 | mV/G | | Magnetic Sensitivity | | A1302; T _A = 25°C | 1.0 | 1.3 | 1.6 | mV/G | | Magnetic Sensitivity over | | A1301 | 1.8 | _ | 3.2 | mV/G | | Operating Temperature Range | $Sens_{(\DeltaT_A)}$ | A1302 | 0.85 | 5 <u>-1-1-1</u> | 1.75 | mV/G | ¹Refer to equation (4) in Ratiometric section on page 4. ²Refer to equation (5) in Ratiometric section on page 4. # A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs #### Characteristic Definitions **Quiescent Output Voltage.** In the quiescent state (no significant magnetic field: B=0), the output, V_{OUTQ} , equals one half of the supply voltage, V_{CC} , throughout the entire operating ranges of V_{CC} and ambient temperature, T_A . Due to internal component tolerances and thermal considerations, there is a tolerance on the quiescent output voltage, ΔV_{OUTQ} , which is a function of both ΔV_{CC} and ΔT_A . For purposes of specification, the quiescent output voltage as a function of temperature, $\Delta V_{OUTQ(\Delta T_A)}$, is defined as: $$\Delta V_{\text{OUTQ}(\Delta T_{\text{A}})} = \frac{V_{\text{OUTQ}(T_{\text{A}})} - V_{\text{OUTQ}(25^{\circ}\text{C})}}{Sens_{(25^{\circ}\text{C})}}$$ (1) where Sens is in mV/G, and the result is the device equivalent accuracy, in gauss (G), applicable over the entire operating temperature range. **Sensitivity.** The presence of a south-polarity (+B) magnetic field, perpendicular to the branded face of the device package, increases the output voltage, V_{OUT} , in proportion to the magnetic field applied, from V_{OUTQ} toward the V_{CC} rail. Conversely, the application of a north polarity (-B) magnetic field, in the same orientation, proportionally decreases the output voltage from its quiescent value. This proportionality is specified as the magnetic sensitivity of the device and is defined as: $$Sens = \frac{V_{OUT(-B)} - V_{OUT(+B)}}{2B}$$ (2) The stability of the device magnetic sensitivity as a function of ambient temperature, $\Delta Sens_{(\Delta T_A)}$ (%) is defined as: $$\Delta Sens_{(\Delta T_A)} = \frac{Sens_{(T_A)} - Sens_{(25^{\circ}C)}}{Sens_{(25^{\circ}C)}} \times 100\%$$ (3) **Ratiometric.** The A1301 and A1302 feature a ratiometric output. This means that the quiescent voltage output, V_{OUTQ} , and the magnetic sensitivity, Sens, are proportional to the supply voltage, V_{CC} . The ratiometric change (%) in the quiescent voltage output is defined as: $$\Delta V_{\text{OUTQ}(\Delta V)} = \frac{V_{\text{OUTQ}(\text{VCC})} / V_{\text{OUTQ}(5V)}}{V_{\text{CC}} / 5 \text{ V}} \times 100\%$$ (4) and the ratiometric change (%) in sensitivity is defined as: $$\Delta Sens_{(\Delta V)} = \frac{Sens_{(VCC)} / Sens_{(5V)}}{V_{CC} / 5 V} \times 100\%$$ (5) **Linearity and Symmetry.** The on-chip output stage is designed to provide linear output at a supply voltage of 5 V. Although the application of very high magnetic fields does not damage these devices, it does force their output into a nonlinear region. Linearity in percent is measured and defined as: $$Lin+ = \frac{V_{\text{OUT}(+B)} - V_{\text{OUTQ}}}{2 (V_{\text{OUT}(+B/2)} - V_{\text{VOUTQ}})} \times 100\%$$ (6) $$Lin- = \frac{V_{\text{OUT}(-B)} - V_{\text{OUTQ}}}{2(V_{\text{OUT}(-B;2)} - V_{\text{OUTO}})} \times 100\%$$ (7) and output symmetry as: $$Sym = \frac{V_{\text{OUT}(+B)} - V_{\text{OUTQ}}}{V_{\text{OUTQ}} - V_{\text{OUT}(-B)}} \times 100\%$$ (8) ## A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs ## Typical Characteristics (30 pieces, 3 fabrication lots) Continued on the next page... Allegro MicroSystems, Inc. 115 Northeast Cutoff Worcester, Massachusetts 01615-0036 U.S.A. 1.508.853.5000; www.allegromicro.com ## A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs ## Typical Characteristics, continued (30 pieces, 3 fabrication lots) Allegro MicroSystems, Inc. 115 Northeast Cutoff Worcester, Massachusetts 01615-0036 U.S.A. 1.508.853.5000; www.allegromicro.com ## A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs Package LH, 3-Pin; (SOT-23W) Branding scale and appearance at supplier discretion A Hall element, not to scale # A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs ## Package UA, 3-Pin SIP Matrix Leadframe Please note that there are changes to the existing UA package drawing pending. Please contact the Allegro Marketing department for additional information. # A1301 and A1302 ### Continuous-Time Ratiometric Linear Hall Effect Sensor ICs #### Package UA, 3-Pin SIP #### Conventional Leadframe Copyright @2005-2010, Allegro MicroSystems, Inc. Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. For the latest version of this document, visit our website: www.allegromicro.com Allegro MicroSystems, Inc. 115 Northeast Cutoff Worcester, Massachusetts 01615-0036 U.S.A. 1.508.853.5000; www.allegromicro.com