

STF6N65K3(045Y)

Datasheet - production data

N-channel 650 V, 1.1 Ω typ., 5.4 A SuperMESH3[™] Power MOSFET in a TO-220FP narrow leads package

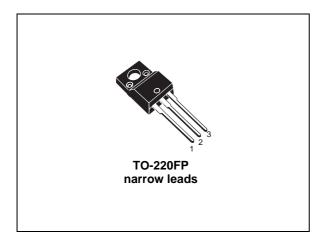
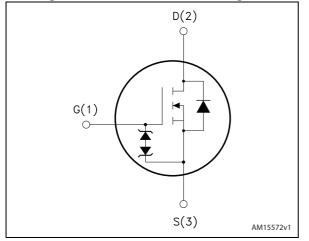



Figure 1. Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on)} max	I _D	P _{TOT}
STF6N65K3(045Y)	650 V	1.3 Ω	5.4 A	30 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Applications

• Switching applications

Description

This SuperMESH3[™] Power MOSFET is the result of improvements applied to STMicroelectronics' SuperMESH[™] technology, combined with a new optimized vertical structure. This device boasts an extremely low on-resistance, superior dynamic performance and high avalanche capability, rendering it suitable for the most demanding applications.

Table 1. Device summary

Order code	Marking	Package	Packaging	
STF6N65K3(045Y)	6N65K3	TO-220FP narrow leads	Tube	

1/13

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data1	0
5	Revision history	2

1

Electrica	l ratings
-----------	-----------

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V _{GS}	Gate- source voltage	± 30	V
Ι _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	5.4 ⁽¹⁾	A
I _D	Drain current (continuous) at T _C = 100 °C	3 ⁽¹⁾	A
I _{DM} ⁽²⁾	Drain current (pulsed)	21.6 ⁽¹⁾	A
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	30	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	5.4	A
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	100	mJ
ESD	Gate-source human body model (C = 100 pF, R = 1.5 k Ω)	2.5	kV
dv/dt ⁽³⁾	Peak diode recovery voltage slope	12	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	2500	V
T _{stg}	Storage temperature	-55 to 150	°C
Тj	Max. operating junction temperature	150	°C

Table 2.	Absolute	maximum	ratings
----------	----------	---------	---------

1. Limited by package

2. Pulse width limited by safe operating area

3. I_{SD} \leq 5.4 A, di/dt \leq 400 A/µs, V_{DD} = 80% V_{(BR)DSS}

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	4.17	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

2 Electrical characteristics

($T_C = 25$ °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	650			V
I _{DSS}		V _{DS} = 650 V V _{DS} = 650 V, T _C =125 °C			0.8 50	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±9	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 50 \ \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 2.7 A		1.1	1.3	Ω

Table 4.	On /of	f states
----------	--------	----------

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 50 V, f = 1 MHz, V _{GS} = 0	-	880 65 12	-	pF pF pF		
C _{o(tr)} ⁽¹⁾	Eq. capacitance time related	V _{GS} = 0, V _{DS} = 0 to 520 V	-	43	-	pF		
C _{o(er)} ⁽²⁾	Eq. capacitance energy related	$v_{GS} = 0, v_{DS} = 0.00520$ v	-	27	-	pF		
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	3.5	-	Ω		
Qg	Total gate charge	$V_{DD} = 500 \text{ V}, \text{ I}_{D} = 5.4 \text{ A},$ $V_{GS} = 10 \text{ V}$	-	33	-	nC		
Q _{gs}	Gate-source charge		-	4	-	nC		
Q _{gd}	Gate-drain charge	(see Figure 16)	-	21	-	nC		

1. $C_{oss eq}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. $C_{oss \ eq}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_DS increases from 0 to 80% V_{DSS}

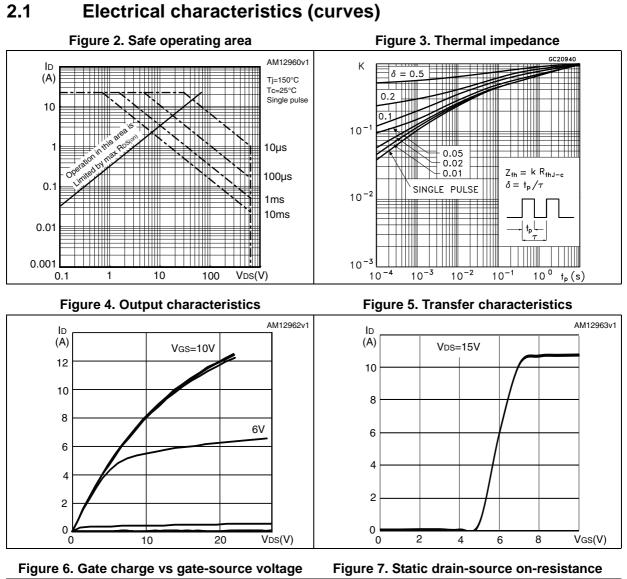
Sy	mbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
to	d(on)	Turn-on delay time		-	14	-	ns		
	t _r	Rise time	$V_{DD} = 325 \text{ V}, I_D = 2.7 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 15</i>)	-	10	-	ns		
to	d(off)	Turn-off-delay time		-	44	-	ns		
	t _f	Fall time		-	24	-	ns		

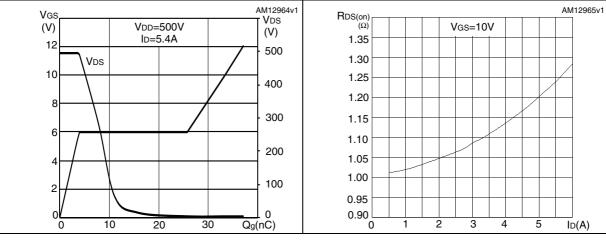
Table 6. Switching times

 Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		5.4	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		21.6	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 5.4 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time		-	285		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 5.4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V} (\text{see Figure 20})$	-	5100		nC
I _{RRM}	Reverse recovery current		-	14		
t _{rr}	Reverse recovery time	I _{SD} = 5.4 A, di/dt = 100 A/µs	-	330		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	2500		nC
I _{RRM}	Reverse recovery current	(see Figure 20)	-	15.5		А

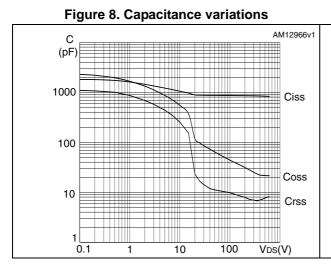
1. Pulse width limited by safe operating area

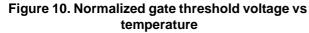

2. Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 1.5%


Table 8. Gate-source Zener di	ode
-------------------------------	-----

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	I_{GS} = ± 1 mA, I_{D} =0	30	-	-	V

The built-in back-to-back Zener diodes have been specifically designed to enhance not only the device's ESD capability, but also to make them capable of safely absorbing any voltage transients that may occasionally be applied from gate to source. In this respect, the Zener voltage is appropriate to achieve efficient and cost-effective protection of device integrity. The integrated Zener diodes thus eliminate the need for external components.





DocID024554 Rev 2

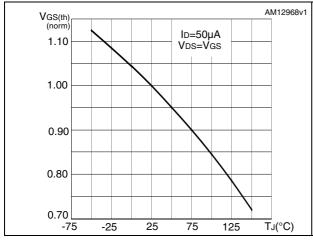
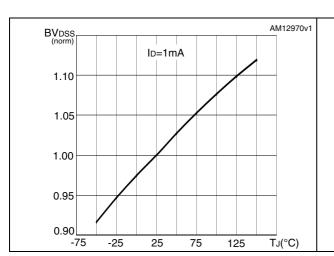



Figure 12. Normalized $\mathsf{BV}_{\mathsf{DSS}}$ vs temperature

Electrical characteristics

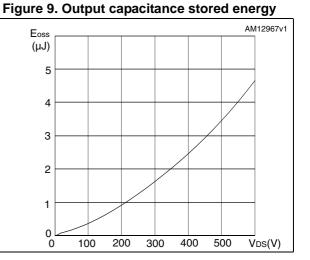


Figure 11. Normalized on-resistance vs temperature

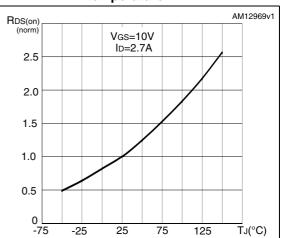
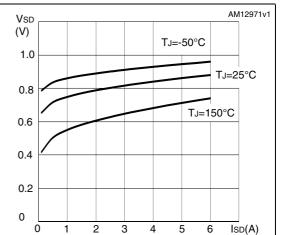



Figure 13. Source-drain diode forward characteristics

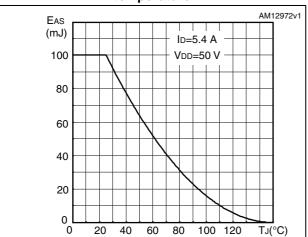


Figure 14. Maximum avalanche energy vs temperature

57

Test circuits 3

Figure 15. Switching times test circuit for resistive load

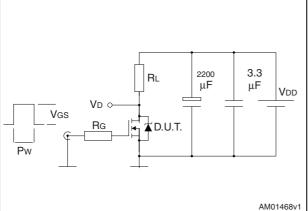
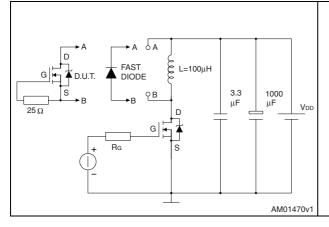
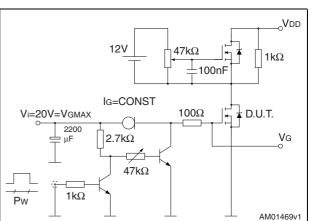
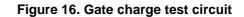


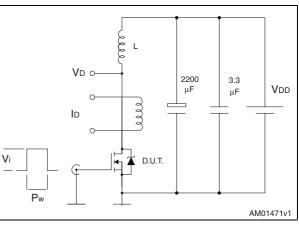
Figure 17. Test circuit for inductive load switching and diode recovery times




Figure 19. Unclamped inductive waveform


VD

ldм


lр

V(BR)DSS

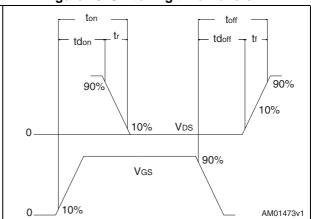


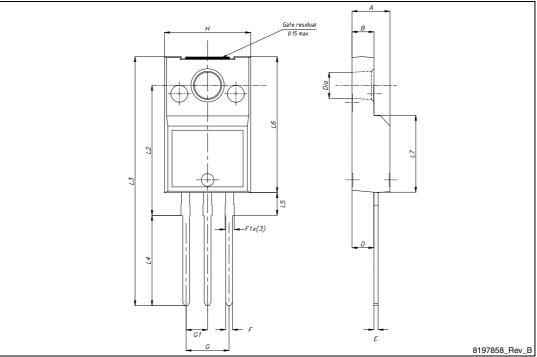
Figure 20. Switching time waveform

Vdd

AM01472v1

Vdd

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	0.95		1.20
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2	15.20		15.60
L3	28.6		30.6
L4	10.3		11.1
L5	2.60	2.70	2.90
L6	15.8	16.0	16.2
L7	9		9.3
Dia	3		3.2

Table 9. TO-220FP narrow leads mechanical data

Figure 21. TO-220FP narrow leads drawing

5 Revision history

Table 10. Docu	ment revision	history
----------------	---------------	---------

Date	Revision	Changes
16-Apr-2013	1	First release.
19-Apr-2013	2	Document status promoted from preliminary data to production data

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

There are the demonstration of the demonstration of the second state of the second sta

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID024554 Rev 2